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Executive summary 

During the last decades, climate change impacts have been noticed around the world. In 
Europe, the quantity of high temperature periods during the summer or drought episodes are 
becoming more frequent. Those factors are increasing the water scarcity among the European 
countries, especially southern countries such as Spain or Greece. This is reflected in their 
national legislations on water reuse, which were implemented in 2007 and in 2011.  

Due to increasing water scarcity, circular economy implementation is becoming necessary in 
the water sector, not only for water regeneration but also for material and energy recovery 
from water sources, like wastewater. Through ten case studies located all around Europe, the 
NextGen project demonstrates, particularly in tasks T1.2-T1.4 within WP1, 26 different 
potential technologies to close the water, energy, and materials cycles in the water sector. 
Specifically, this deliverable is focused on closing the water cycle through technologies and 
case studies. The technologies include membrane-based wastewater treatment for water 
reuse, a feasibility study on reclaimed water production at a local and regional level, rainwater 
harvesting systems, and groundwater storage systems. Each technology section is meant to 
be standalone including a presentation of each demonstration case and the main results and 
outcomes.  

Feasibility study on reclaimed water production at a local and regional level 

Prior to implementing circular economy solutions for water recovery at full-scale and at a local 
or regional revel, it is recommended to conduct a feasibility evaluation. The study carried out 
ƛƴ ¢ƛƳƛǒƻŀǊŀ ŀƭǎƻ ƛƴǘŜƎǊŀǘŜŘ ǇƻǘŜƴǘƛŀƭ ǎǘŀƪŜƘƻƭŘŜǊǎ ǿƘƛŎƘ ŎƻǳƭŘ ōŜƴŜŦƛǘ ŦǊƻƳ ǘƘŜ 
implementation of advanced treatments for the wastewater in order to obtain the reclaimed 
water for reuse, established collaboration with the local and regional administration, and 
conducted dissemination and communication activities to increase the knowledge and 
awareness on water scarcity, water reuse and circular economy. The study focused on 
recovering 100% of the current WWTP effluent (10 800 m3/h (See Table 1)). Three clients for 
reclaimed water use, as well as the cost to build the reclaimed water distribution network and 
the water quality required for the selected uses, were identified.  

Advanced treatment technologies for water reuse 

Five different technologies for producing reclaimed water from wastewater have been tested 
in Spernal, Athens, La Trappe, Costa Brava and Gotland. All the technologies were at 
technology readiness level (TRL) 7 and demonstrated their ability to produce reclaimed water 
of different quality levels to allow a diversity of uses such as urban, industrial, private, 
agricultural, and other non-potable uses according to regional and European regulations (See 
Table 1). The five technologies were also implemented at pilot scale, although their water flow 
ranged from 0.1 (at La Trappe) to 20 m3/h (in Spernal). Additionally, these technologies 
demonstrated their modularity, flexibility, and scalability for future implementation at pilot- 
and full-scale. However, further investigation and testing is recommended, since the TRLs of 
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7-8 and operation of each technology may vary depending on inlet water quality 
characteristics. 

Rainwater harvesting systems 

The studies carried out in Gotland and in Filton Airfield demonstrated that significant savings, 
in terms of drinking water demand, can be achieved when harvesting rainwater in the studied 
area (See Table 1). For example, with a surface of 110 km2, it is possible to store 100 000 m3/y, 
meaning 25 % of the annual demand. In case of the Filton Airfield, where several theoretical 
scenarios varying the catchment surface between 13 000 - 30 000 m2 were evaluated, it was 
possible to reduce 10-75 % of drinking water demand when using the harvested rainwater for 
toilet flushing and public irrigation in the area.  

Aquifer storage systems 

Like rainwater harvesting systems, aquifer storage systems allow storage of a significant water 
volume from rainwater harvesting (See Table 1). Thus, the stored volume can reduce 
groundwater demand when recovered water is used for non-potable purposes. In case of 
Westland, the water demand for horticulture irrigation is met by rainwater stored in shallow 
basins and by (unsustainable) desalinated brackish groundwater.  The aquifer storage of 4.8 
Mm3/y of excess rainwater in a waterbanking system at half of the horticulture companies 
reduces the net groundwater extraction with more than 80%. The Gotland study evaluated 
the same catchment surface and water storage as in the aforementioned rainwater harvesting 
system, therefore the annual water savings were calculated to be the same (25% annually).  
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Table 1. Overview about the NextGen solutions for closing the water cycle. 

CE solution Case study Sub task Section Technology TRL Quantified impact Water uses 

Feasibility study 
on reclaimed 
water production 

¢ƛƳƛǒƻŀǊŀ 1.2.5 2 
Feasibility study on 

reclaimed water production 
Theoretical 

study 
Theoretical study; 10 

800 m3/h 
Urban, industrial and 

agricultural use 

Advanced 
treatment for 
water reuse 

Spernal 1.2.3 3.1 
Anaerobic membrane 

bioreactor 
7 500 m3/d 

Farming and industrial 
use 

Athens 1.2.4 3.2 
Membrane bioreactor 
(sewer mining unit) 

8 25 m3/d 
Urban irrigation and 

other non-potable use 

La Trappe 1.2.6 3.3 

Metabolic network reactor + 
MELiSSA 

Microfiltration/reverse 
osmosis membranes 

7 100 L/h 
Bottle washing, 
aeroponics and 

aquaculture 

Costa Brava 1.2.2 3.4 
Ultrafiltration + regenerated 
reverse osmosis membranes 

7 2 m3/h Private use 

Gotland 1.2.1 3.5 
Decentralized reverse 

osmosis membrane system 
7 1.6 m3/h 

Indirect drinking water 
supply 

Rainwater 
harvesting 
systems 

Gotland 1.2.1 4.1 Innovative floodgate 
Theoretical 

study 

Storage: 100 000 
m3/y, 25 % of water 

savings per year 

Urban and agricultural 
use 

Filton Airfield 1.2.7 4.2 Alternative water source 
Theoretical 

study 
10 ς 75 % of water 
savings per year 

Toilet flushing and 
public irrigation 

Aquifer storage 
systems 

Westland 1.2.1 5.1 
Aquifer storage and 

recovery 
Theoretical 

study 

Aquifer rainwater 
storage: 4.8 Mm3/y; 

80 % reduction of net 
groundwater 

extraction 

Horticulture irrigation 

Gotland 1.2.1 5.2 Real time measurements 
Theoretical 

study 

Storage 100 000 
m3/y; 25 % of water 

savings per year 

Urban and agricultural 
uses 
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Disclaimer 
Any dissemination of results must indicate that it reflects only the author's view and that the 
Agency and the European Commission are not responsible for any use that may be made of 
the information it contains. 
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1. Introduction   
The NextGen project aims to demonstrate the viability of technical, business and governance 
solutions towards a circular economy (CE) in the water sector. In Work Package 1 (WP1), 
aiming to close water, energy, and materials cycles, several technologies were implemented 
in 10 demonstration cases, providing evidence demonstrating the feasibility of innovative 
technological solutions: Braunschweig (DE), Costa Brava (ES), Westland (NL), Altenrhein (CH), 
Spernal (UK), La Trappe (NL), Gotland (SE), Athens (GR), Filton Airfield (UK) and ¢ƛƳƛǒƻŀǊŀ (RO). 
The specific objective of the WP, to promote the feasibility and test the technologies applied, 
were presented together with the pre-existing infrastructure in D1.1 Baseline conditions 
(Kleyböcker et al., 2019) and first results in D1.2 Operational demo cases (Serra et al., 2020). 
The current deliverable is focused on the demonstrated technologies and the studies 
specifically within the water cycle (See Figure 1).  The case studies involved on the 
ǘŜŎƘƴƻƭƻƎƛŜǎΩ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŀƴŘ ǘƘŜ ŦŜŀǎƛōƛƭƛǘȅ ǎǘǳŘƛŜǎ ǿƛǘƘƛƴ ǘƘŜ ǿŀǘŜǊ ŎȅŎƭŜ ŀǊŜ 
summarized in Table 2 together with the future uses of the reclaimed or collected water.  
 

 
Figure 1. Circular economy nexus between water, energy, and materials cycles in the water sector. 






























































































































































































































































































































































































































































































